American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Summer 2009
quiz \# 2-solution part 2

1. If X is uniformly distributed over $(-1,1)$. Find $P\left(|X|>\frac{1}{2}\right)$.

$$
P\left(|X|>\frac{1}{2}\right)=\frac{1}{2}
$$

2. Let X be a random variable with pdf $f(x)=3 x^{2}, 0<x<1$. Find $E\left(X^{n}\right)$, then deduce $\operatorname{Var}(X)$.
$E\left(X^{n}\right)=\int_{0}^{1} 3 x^{n+2} d x=\frac{3}{n+3}$, then $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{3}{5}-\frac{9}{16}=\frac{3}{80}$.
3. Let X be a random variable with pdf

$$
f(x)=\left\{\begin{array}{rr}
x+1 & -1<x<0 \\
1-x & 0<x<1
\end{array}\right.
$$

Find $F_{X}(x)$, the cdf of X.
$F_{X}(x)= \begin{cases}0 & x<-1 \\ \frac{x^{2}}{2}+x+\frac{1}{2} & -1<x<0 \\ \frac{1}{2}+x-\frac{x^{2}}{2} & 0<x<1 \\ 1 & x>1\end{cases}$
4. The time (in hours) required to repair a machine is an exponentially distributed random variable with parameter $\lambda=1 / 2$. Find the probability that a repair time takes at least 10 hours given that its duration exceeds 9 hours.
$X \rightsquigarrow f(x)=\frac{1}{2} e^{-\frac{x}{2}}, 0<x<\infty$.
$P(X \geq 10 \mid X \geq 9)=P(X \geq 1)$ (memoryless property of the exponential distribution).
$P(X \geq 1)=\int_{0}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} d x=e^{-\frac{1}{2}}$
5. Let X be a random variable with pdf $f(x)=C x^{3} e^{-2 x}, \quad 0<x<\infty$. Find the value of C.
$C=\frac{1}{\Gamma(4) \times(1 / 2)^{4}}$ by comparison with a Gamma distribution, then $C=8 / 3$
6. Let X be a random variable with pdf $f(x)=3 x^{2}, 0<x<1$. Find the pdf of $Y=-6 \ln X$. $y=-6 \ln x$ is one-to-one; the interval $] 0,1[$ is mapped into $] 0, \infty[$.
$x=e^{-y / 6}=g^{-1}(y)$, and $\left(g^{-1}(y)\right)^{\prime}=-\frac{1}{6} e^{-y / 6}$, and then
$h(y)=\left|-\frac{1}{6} e^{-y / 6}\right| \times 3\left(e^{-y / 6}\right)^{2}=\frac{1}{2} e^{-y / 2}, 0<y<\infty$

